

Méthodes mixtes ? Données mixtes ? Cadres théoriques mixtes ? Pourquoi mixer ?

Ludovic Seifert

Faculté des Sciences du Sport, Université de Rouen Normandie

Institut Universitaire de France, Paris

Mixed methods research : constat

- Absence d'une définition stabilisée : plus de 19 définitions différentes (Johnson, Onwuegbuzie, & Turner; 2007).
- Différentes fonctions des MMR selon la typologie de Greene et al., (1989):
- Triangulation: convergence, corroboration.
- Complementarity: association sans prédominance.
- Development: une méthode développe l'autre.
- Initiation: contradictions, tensions, nouvelles perspectives
- Expansion: multiplie ou augmente l'étendue ou la portée.

Articulation des approches paradigmatiques: Congruence et/ou intégration paradigmatique, vers une méta-théorie ou une nouvelle approche amenant une rupture épistémologique ?

Articulation des méthodologies: Découle généralement de l'articulation des approches...assujettit à une congruence ou complémentarité ou intégration des approches ?

Articulation des méthodes:

Articulation simultanée (i.e. en même temps ou sur le même échantillon) ou séquentielle (i.e. séparée) (Morse, 1991).

Articulation des données:

Peut porter sur le <u>primat</u> d'un type de données, sur la nature des données (quali/quanti, continues/discrètes), sur le type d'articulation (convergence/divergence, complémentarité/indépendance, intégration, etc)

adapté de Vors & Bourcier (2022, PESP)

Introduction

Mixed methods research : notre démarche

1) Pourquoi mixer ?

Identifier le besoin, les risques et/ou limites.

Attention de ne pas trahir l'approche paradigmatique et les présupposés théoriques dans lesquels s'inscrit la recherche en croyant aux « faux » bénéfices des MMR.

3) Au final, si l'articulation de méthodes et données, et plus largement de méthodologies, peut être faite pour des *raisons pragmatiques*, nous préférons questionner au préalable *l'articulation paradigmatique qui les soustend*. 2) *Commencer par se questionner sur les contours de son approche épistémologique* et la compatibilité avec d'autres approches.

Se questionner sur les innovations méthodologiques possibles / aux présupposés théoriques, et seulement ensuite sur la mise en œuvre de ces innovations qui peuvent passer par les MMR.

Introduction

Mixed methods research : notre approche

Notre approche, notre paradigme: la COMPLEXITE

- Ne pas confondre <u>complexité</u> et <u>complétude</u>: la pensée complexe aspire à la connaissance multidimensionnelle. Mais elle sait au départ que la connaissance complète est impossible. Accepter l'incomplétude et l'incertitude (Morin, 1990, La pensée complexe).
- Attention de ne pas utiliser les MMR pour additionner ou multiplier les méthodes et les données sans questionner et sans précautions paradigmatiques.
- Ne pas croire que la complexité conduit à l'élimination de la <u>simplicité</u>. Les sciences de la complexité ne cherchent ni à réduire, ni à multiplier mais à <u>résumer</u>, à <u>capturer</u> la <u>complexité par un paramètre macroscopique</u> (De Rosnay, 1975, le macroscope).
- Approche <u>holistique</u>, <u>systémique</u>, <u>multi-échelles ou multi-</u> <u>niveaux (=système de systèmes)</u>.

Notre approche : Approche articulatoire entre l'approche énactive du cours d'action (Theureau, 2003, 2004, 2015) et l'approche dynamique écologique (Button, Seifert, Chow, Araujo, & Davids, 2020)

Introduction

Conditions minimales d'une articulation entre l'approche dynamique écologique et l'approche énactive du cours d'action

5

La notion de « productive synthesis » (Baggs & Chemero, 2018)

PHYSICAL EDUCATION AND SPORT PEDAGOGY 2022, VOL. 27, NO. 2, 130–143 https://doi.org/10.1080/17408989.2021.1999919

Check for update

Enactive and ecological dynamics approaches: complementarity and differences for interventions in physical education lessons David Adé^a, Ludovic Seifert [®]^a, Marek McGann^b and Keith Davids [®]^c

Si pas d'intégration, ni de juxtaposition, quelle mise en œuvre pour une complémentarité ? Donner le PRIMAT à une approche, à une méthodologie ?

Deux façons différentes d'entrer dans le couplage : acteur - environnement

Dynamique écologique: Couplage symétrique entre acteurenvironnement. Ce couplage est la plus petite unité d'analyse; on parle de variable eco-physique (Button et al., 2020).

Commentry

Avoiding organismic asymmetries in ecological cognition: Analysis of agent-environment couplings with eco-physical variables

Ludovic Seifert¹, Duarte Araújo² and Keith Davids³

Enaction (Cours d'Action): Couplage asymétrique entre acteur-environnement. Entrée par la dimension expérientielle, signifiante pour l'acteur (notion de sense-making, Di Paolo et al., 2017)

Adaptive Behavio

Adaptive Behavior 2022, Vol. 0(0) 1–6

Donner le PRIMAT à une approche, à une méthodologie ?

Le PRIMAT dépend de la question de recherche et à des incidences sur les (l'articulation des) méthodologies:

1) Quel niveau de granularité d'analyse et comment faire dialoguer les niveaux ? Vers une analyse multi-niveaux

2) Comment analyser la dynamique (temporelle) de l'activité ? Comment « borner » (délimiter temporellement) l'apparition/disparition d'une activité typique?

3) Si on croise le pb de la granularité d'analyse avec l'analyse de la dynamique temporelle, la question qui se pose: Comment articuler la dynamique du comportement avec la dynamique de l'expérience ?

4) Comment analyser l'activité tout en préservant l'écologie de la situation ? observation *vs.* situation expérimentale contrôlée

5) Comment les données d'expérience aident t'elle à donner du sens à des données comportementales ? Exemple d'échantillonnage des données et des variables dépendantes grâce aux données d'expérience

1) Quel niveau de granularité d'analyse et comment faire dialoguer les niveaux

Problématique: Sur la base de la méthodologie du Cours d'Action et de l'analyse du signe hexadique (6 composantes du signe), comment <u>typicaliser</u> l'activité c'està-dire remonter à un niveau de <u>généricité</u> selon une approche <u>holistique</u> pour définir une <u>activité typique</u> ?... C'est un construit du chercheur, sur la base des significations de l'acteur.

Apport des data mining (fouille de données): Analyses de clustering sur des données binomiales utilisées dans la dynamique écologique pour identifier des clusters phénoménologiques.

Primat donné à l'approche cours d'action

Psychological Research https://doi.org/10.1007/s00426-023-01817-9

RESEARCH

Exploring in a climbing task during a learning protocol: a complex sense-making process

 $Clément\ Ganachaud^{1} \cdot Caroline\ Ganière^{2} \cdot Guillaume\ Hacques^{1} \cdot Nadège\ Rochat^{2} \cdot Ludovic\ Seifert^{1} \cdot David\ Adé^{1}$

Classes d'exploration	Dimensions générales des intentions				Dimensions générales des perceptions				Dimensions générales des actions			
	Assurer l'exécution correcte des séquences d'action	Améliorer le timing de la grimpe	Maintenir l'équilibre en grimpant	Respecter les consignes	Sensation d'être équilibré	Sensation de ne pas être équilibré	Sensation d'un timing de grimpe efficace	Sensation d'un timing de grimpe perturbé	Improvise des actions	Modifie le plan d'action	Fais des erreurs	Récite les actions prévues
Exploration affinée (EA)	97.3	43.2	13.5	21.6	8.1	62.2	21.6	89.2	100	54.1	37.8	75.7
Exploration guidée par la performance (EP)	88.5	50.0	0.0	0.0	23.1	3.8	92.3	30.8	30.8	30.8	26.9	96.2
Exploration guidée par le timing de la grimpe (ET)	0.0	95.5	9.1	18.2	18.2	18.2	72.7	63.6	13.6	27.3	22.7	100
Exploration guidée par l'équilibration (EE)	90.9	9.1	100	18.2	81.8	45.5	18.2	0.0	81.8	27.3	45.5	63.6

L'analyse de clustering permet d'étudier la dynamique de la distribution des clusters

scientific reports

(2023) 13:2009

| https://doi.org/10.1038/s41598-023-29238-z

OPEN Narrowing the coordination solution space during motor learning standardizes individual patterns of search strategy but diversifies learning rates

John Komar^{1⊠}, Ludovic Seifert², Nicolas Vergne³ & Karl M. Newell⁴

Clusters initialement stables dans le répertoire Clusters émergents mais non stabilisés à la fin du protocole d'apprentissage

Clusters stabilisés à la fin du protocole d'apprentissage

Quel est le rôle des clusters temporairement présents dans l'apprentissage ? Sont ils là comme « marche-pieds » pour explorer de nouvelles possibilités dans le futur ?

2) Comment analyser la dynamique (temporelle) de l'activité ?

Problématique: Comment « borner » (délimiter temporellement) l'apparition/disparition d'une activité typique? Comment rendre compte de la dynamique de données (expérientielles) microscopiques à l'échelle macroscopique (en résumant la complexité sur un empan temporel long) ? <u>Primat donné à l'approche cours d'action</u>

PHYSICAL EDUCATION AND SPORT PEDAGOGY, 2018 VOL. 23, NO. 2, 134–149 https://doi.org/10.1080/17408989.2017.1342790

Check for updates

Taylor & Francis Grou

Dynamics of student interactions: an empirical study of orienteering lessons in physical education

Clément Jourand^a, David Adé^a, Carole Sève^b, John Komar^a and Régis Thouvarecq^a

Ratio de changement sur une fenêtre de 10 s, glissante sur 5 s :

Ex de 10 interactions successives: [A, A, A, A, A, A, A, C, A, A, C]. Le ratio est 3 (nb de changement observés) / 9 (nb potentiel de changement) × 100 = 33.3%.

4. Distribution of the interaction modes in dyad 6 (Elias/Vincent) with the two-map context.

Ratio of change in the interaction modes of dyad 6 (Elias/Vincent) with the two-map context.

3) Si on croise le pb de la granularité d'analyse avec l'analyse de la dynamique temporelle, la que tipperqui se pose: Comment articuler la dynamique du comportement avec la dynamique de l'expérience ?

OPEN ACCESS

Sciences e

Problématique: est ce qu'un changement de comportement est associé à un changement de l'expérience, des significations rapportées par l'acteur (de l'activité typique) ? et inversement ... qu'indiquent des changements simultanés / décalés du comportement / l'expérience ?

ETAPS

Un biais méthodologique est il possible ?

A cause de la <u>délimitation temporelle</u> des clusters phénoménologiques ?

À cause d'un pb de granularité ?

À cause de l'effet <u>transformatif</u> suite à la répétition d'entretien d'auto-confrontation ?

frontiers in Psychology

Interpersonal Coordination and Individual Organization Combined with Shared Phenomenological Experience in Rowing Performance: Two Case Studies

Ludovic Seifert^{1*}, Julien Lardy², Jérôme Bourbousson², David Adé¹, Antoine Nordez², Régis Thouvarecq¹ and Jacques Saury²

Objectif: Analyser le rôle (fonctionnel vs. perturbant) de la variabilité de la coordination interpersonnelle sur la performance en aviron et l'expérience partagée qu'en faisaient les acteurs. Primat donné à l'approche dynamique écologique.

published: 30 January 2017

doi: 10.3389/fpsva.2017.00075

TABLE 2 | Number of cycles outside of the confidence interval and the time at which this high variability occurs during the race, based on boat velocity and the behavioral data (kinematic and kinetic) for the international crew.

Cycle	Kinematic	Kinetic	Impulsion differences		Mean velocity	Consequences for	Experience of joint action and/or performance outcome				
number	coordination	recordination	Time	Who's higher?		coordination	Stroke rower experience	Bow rower experience	Shared experience	Similarity or divergence of concerns between rowers	
1	-	-	32.6	Bow	9.8–39.4	Behavioral perturbation	Meaningful	Meaningful	SDE	Diverging because the stroke rower wanted to go straight and the bow rower wanted to turn the boat to stay far from a buoy	
2	62.3–66	_	-	-	-	Functional adaptation	Meaningless	Meaningful	NSEM	The bow rower focused on turning the boat	
3	-	-	225.2	Bow	-		Meaningful	Meaningful	SSE-F	Similar because both rowers focused on the same direction (i.e., turning because they are too close the river bank)	
4	-	-	234.7	Bow	-		Meaningful	Meaningful	SSE-F	Similar because both rowers focused on the same direction (i.e., to go straight)	
5	274.8	274.7	276.7	Bow	-		Meaningless	Meaningful	NSEM	The bow rower focused on his technique	
6	-	-	301.9	Bow	-		Meaningful	Meaningful	SSE-F	Similar because both rowers focused on the same direction (i.e., to go straight)	
7	406–409.9	407.9–409.8	407.9–413.7	7 Stroke - Bow - Stroke	409.8–411.8	Behavioral perturbation	Meaningful	Meaningful	SDE	Diverging because the stroke rower focused or the boat and wave whereas the bow rower focused on his partner	
8	-	-	490.9	Stroke	_	Functional adaptation	Meaningless	Meaningless	SSE-L	Х	
)	532.1	530.1–533.9	533.9	Bow	-		Meaningless	Meaningless	SSE-L	х	
10	539.8	_	-	-	537.8–539.7	Behavioral perturbation	Meaningful	Meaningful	SDE	Diverging because one rower focused on his technique whereas the other focused on his partner	
11	-	_	572.1	Stroke	-	Functional adaptation	Meaningless	Meaningless	SSE-L	Х	
2	-	_	579.6	Stroke	-		Meaningless	Meaningless	SSE-L	Х	
3	-	588.9	-	-	-		Meaningless	Meaningless	SSE-L	Х	
14	-	_	619.9–626.9	9 Stroke	-		Meaningful	Meaningful	SDE	Diverging because the stroke rower focused on his stroke frequency and boat velocity whereas the bow rower focused on his partner	
15	-	632.2	632.2	Stroke	-		Meaningful	Meaningful	SSE-F	Similar because both rowers focused on their technique	
16	-	648.7	-	-	640.6–642.3	Behavioral perturbation	Meaningful	Meaningful	SDE	Diverging because the stroke rower increased speed and stroke frequency for the final part, while the bow rower wanted to do it progressively	

The last column indicates whether the stroke and bow rowers experienced this higher variability in joint action and/or performance as (a) Simultaneously and Similarly Experienced as Meaningfus (SSE-L), (b) Simultaneously and Similarly Experienced as Meaningful (SSE-F), (c) Simultaneous and Diverging Experiences (SDE), or Not Simultaneously Experienced as Meaningful (NSEM), on the basis of the phenomenological data.

4) Comment analyser l'activité tout en préservant l'écologie de la situation ?

<u>Observation vs.</u> <u>Situation expérimentale contrôlée</u>:

Dans le cas d'une étude observationnelle (par ex compétition, contexte écologique de performance non contrôlé par l'expérimentateur), les données expérientielles permettent de comprendre les changements/adaptations de comportement. <u>Primat donné à l'approche</u> <u>dynamique écologique.</u>

OPEN OACCESS Freely available online

Neurobiological Degeneracy and Affordance Perception Support Functional Intra-Individual Variability of Inter-Limb Coordination during Ice Climbing

Ludovic Seifert¹*, Léo Wattebled¹, Romain Herault², Germain Poizat³, David Adé¹, Nathalie Gal-Petitfaux⁴, Keith Davids⁵

Débutant M Sup

Perceptions		Actions	Intentions				
Good hole is deep and v (e.g., expert 3: "it must be "I try to find a deep hole, o better it is").	e a vertically oriented a vertical hole" deeper is the hole,	Good hole is a hole that could be hooked and not swung into (e.g., expert 2: "There is a hole, I know I can put the ice tool, just put the ice tool like this").	Focus on safety , since one of their goals was to save the icefall structure (e.g., expert 4: "My goal is to swing with the weakest force to minimize damage of the icefall, because it remains a fragile structure").				
homogeneous around t focussed on the sound of the icefall to detect inform property of ice thickness "it's not only the hole, it's quality the manner of w responses to us, the sound especially when the blade icea good sound is a shi not too loudwhen there the ice tool will anchor un	his hole. Perception of the tools against mation about the s (e.g., expert 3: also the ice thich the ice is very important, penetrates in the ort thud sound, is no vibrations, iformly in the ice").	experts put the blade horizontally into the hole and apply a downward force or they smoothly whipped the ice tool with the wrist (e.g., expert 3: "I just apply a small wrist acceleration at the end of the hooking like a whipping"). The upper and lower limb actions seemed strongly linked because the holes used by the ice tools were also exploited for the crampons (e.g., expert 5: "I tried to re-use the hole done by my ice tools for my crampons").	Hooking hole (e.g., expert 1: "The most economic strategy is to hook; so when I can, I just put my blade in a hole that is more economic than swinging. Ice tool swinging becomes rapidly tiring"), Balancing the body (e.g., expert 3: "I move my crampons step by step from right to left to centre my pelvis between my ice tool"; expert 2: "If I move too far from my ice tool, when I take of my other ice tool, my body will turn like a door, so I try to regulate my posture by moving my foot through small and numerous kicking"), Maintaining a constant climbing fluency and speed (e.g., expert 5: "I anchor my two ice tools, then I move my crampons step by step, and so on").				
Perceptions Actions			Intentions				
Good hole is big and deep (e.g., beginner 2: "a good hole is a big and deep hole; if the hole is like 2 cm, I go on a side to see a deeper one exists"). A deep hole looks anchored (e.g., be half or fully anchora fall surface (e.g., I touched the ice fall. in my anchorage"). To anchor the blade Beginners attempter steps (e.g., beginn and I don't especial When they were not kicking with thei to design a deep s platform, I dig the i		like a hole where the blade could be fully eginner 1: "I look for a deep anchorage, with the blade ded") and the stick of the ice tool is close to the ice beginner 2: "when I find a good hole like this, the glove when my hand is close to the ice fall, I'm confident de, the beginners swung the blade in the hole t downward (e.g., beginner 3: "I pull on the e is anchored to test it"). ed to put their crampons horizontally on the her 2: "I put my foot like duck, horizontally on the step Ily take care of the two frontal peaks of the crampons"). ot able to find steps, they engaged in repetitive ir crampons until creating a big hole in the icefall step (e.g., beginner 1: "when there is no step or icefall").	Focus on safety found only in: Deep ice tool anchorage (e.g., beginner 4: "I'm scared when the ice tool is only put on the blade extremity. I looked for a deep anchorage with my ice tool because I feel it is better when the blade does not move"), Natural step with a large surface on which to put their crampons, Stabilised blade and ice tool that did not move (e.g., beginner 3: "When the ice tool is well anchored and touched the icefall, I keep going"), Short time where they needed to use the frontal peaks of the crampons because they felt insecure and in an unsafe situation (e.g., beginner 3: "When the icefall was vertical, only the frontal peaks of the crampons were anchored, it was like nothing, no support").				

5) Comment les données d'expérience aident t'elle à donner du sens à des données comportementales ?

Problématique: Comment interpréter les changements de préoccupations typiques au cours du temps ? <u>Primat donné au Cours d'action</u>

Ex1: <u>Choix des variables dépendantes pour</u> <u>analyser le comportement grâce aux données</u> <u>d'expérience</u>:

Les coureurs rapportent des pb de ballotements du système d'hydratation.

Cognitive Processing https://doi.org/10.1007/s10339-019-00921-2

RESEARCH ARTICLE

An enactive approach to appropriation in the instrumented activity of trail running

Nadège Rochat^{1,2,3} · Ludovic Seifert¹ · Brice Guignard¹ · Denis Hauw²

Ex2: <u>Echantillonnage des données comportementales grâce aux</u> <u>données d'expérience</u>:

Analyse du couplage des accélérations du bassin et du sac en découpant le parcours de 3km en 2 parties reflétant 2 profils différents (plat au début, vallonné à la fin).

Exemple de résultat: prise d'avance des accélérations des lanières / accélération du bassin

Light Stable Silence Weight Backpack height (B.p. height) Straps Weight Bottles in the visual field (BVF) Noise Water sloshing (WS) Oppression/Friction Straps bouncing (SB) Enveloping backpack (EB)

Conclusion

- Une seule personne peut elle être spécialiste de 2 approches, voire 2 paradigmes différents, qui présuppose des ontologies différentes sur l'activité humaine ? Peut on s'inscrire dans 2 approches différents au risque d'être assis entre 2 chaises et n'être spécialiste d'aucune de ces 2 approches ?
- Les MMR ne sont t'elles possibles qu'à travers un travail d'équipe avec des spécialistes qui font « un pas de coté » ?
- Se questionner sur les contours de son paradigme et de ses présupposés théoriques, et la compatibilité avec d'autres approches.
- Se questionner sur les <u>innovations méthodologiques</u> possibles / aux présupposés théoriques, et seulement ensuite sur la mise en œuvre de ces innovations qui peuvent passer par les MMR.

Remerciements

Adé David Araujo Duarte Bourbousson Jérôme Davids Keith Gal-Petitfaux Nathalie Ganachaud Clément Ganière Caroline Hacques Guillaume Hauw Denis Komar John Mc Gann Marek Poizat Germain Rochat Nadège Saury Jacques

Merci pour votre attention

Ludovic Seifert Faculté des Sciences du Sport, Université de Rouen Normandie Institut Universitaire de France, Paris

Ludovic.seifert@univ-rouen.fr